7. References

References

[1]

T.L. Amundrud, H. Malling, and R.G. Ingram. Geometrical constraints on the evolution of ridged sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC002251.

[2]

K.C. Armour, C.M. Bitz, L. Thompson, and E.C. Hunke. Controls on Arctic sea ice from first-year and multi-year ice survivability. J. Climate, 24:2378–2390, 2011. URL: http://dx.doi.org/10.1175/2010JCLI3823.1.

[3]

S.P.S. Arya. A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res., 80:3447–3454, 1975. URL: http://dx.doi.org/10.1029/JC080i024p03447.

[4]

A. Assur. Composition of sea ice and its tensile strength. In Arctic sea ice; conference held at Easton, Maryland, February 24-27, 1958, volume 598, pages 106–138. Publs. Natl. Res. Coun. Wash., Washington, D.C., 1958.

[5]

C.M. Bitz, M.M. Holland, M. Eby, and A.J. Weaver. Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res. Oceans, 106:2441–2463, 2001. URL: http://dx.doi.org/10.1029/1999JC000113.

[6]

C.M. Bitz and W.H. Lipscomb. An energy-conserving thermodynamic sea ice model for climate study. J. Geophys. Res. Oceans, 104(C7):15669–15677, 1999. URL: http://dx.doi.org/10.1029/1999JC900100.

[7]

E. Brady, S. Stevenson, D. Bailey, Z. Liu, D. Noone, J. Nusbaumer, B. L. Otto-Bliesner, C. Tabor, R. Tomas, T. Wong, J. Zhang, and J. Zhu. The connected isotopic water cycle in the community earth system model version 1. J. Adv. Modeling Earth Sys., 11(8):2547–2566, 2019. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001663.

[8]

B.P. Briegleb and B. Light. A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Technical Note NCAR/TN-472+STR, National Center for Atmospheric Research, 2007. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/BL_NCAR2007.pdf.

[9]

W. D. Collins and coauthors. The Community Climate System Model Version 3 (CCSM3). J. Climate, 19:2122–2143, 2006. URL: https://doi.org/10.1175/JCLI3761.1.

[10]

C. Dang, C. S. Zender, and M. G. Flanner. Intercomparison and improvement of two-stream shortwave radiative transfer schemes in earth system models for a unified treatment of cryospheric surfaces. The Cryosphere, 13:2325–2343, 2019. doi:10.5194/tc-13-2325-2019.

[11]

P. Duarte and Coauthors. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results. J. Geophys. Res. Biogeo., 122:1632–1654, 2017. URL: http://dx.doi.org/10.1002/2016JG003660.

[12]

E.E. Ebert, J.L. Schramm, and J.A. Curry. Disposition of solar radiation in sea ice and the upper ocean. J. Geophys. Res. Oceans, 100:15965–15975, 1995. URL: http://dx.doi.org/10.1029/95JC01672.

[13]

H. Eicken, T.C. Grenfell, D.K. Perovich, J.A Richter-Menge, and K. Frey. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC001989.

[14]

D.L. Feltham, N. Untersteiner, J.S. Wettlaufer, and M.G. Worster. Sea ice is a mushy layer. Geophys. Res. Lett., 2006. URL: http://dx.doi.org/10.1029/2006GL026290.

[15]

G.M. Flato and W.D. Hibler. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res. Oceans, 100:18611–18626, 1995. URL: http://dx.doi.org/10.1029/95JC02091.

[16]

D. Flocco and D.L. Feltham. A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003836.

[17]

D. Flocco, D.L. Feltham, and A.K. Turner. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 2010. URL: http://dx.doi.org/10.1029/2009JC005568.

[18]

D. Flocco, D. Schroeder, D.L. Feltham, and E.C. Hunke. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. Oceans, 2012. URL: http://dx.doi.org/10.1029/2012JC008195.

[19]

National Centers for Environmental Information. World Ocean Atlas Version 2. Natl. Ocn. and Atm. Admin, 2013. URL: https://www.nodc.noaa.gov/OC5/woa13/.

[20]

K.M. Golden, H. Eicken, A.L. Heaton, J. Miner, D.J. Pringle, and J. Zhu. Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett., 2007. URL: http://dx.doi.org/10.1029/2007GL030447.

[21]

W.D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846, 1979. URL: http://dx.doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

[22]

W.D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973, 1980. URL: http://dx.doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.

[23]

M.M. Holland, D.A. Bailey, B.P. Briegleb, B. Light, and E. Hunke. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25:1413–1430, 2012. URL: http://dx.doi.org/10.1175/JCLI-D-11-00078.1.

[24]

C. Horvat and E. Tziperman. A prognostic model of the sea-ice floe size and thickness distribution. The Cryosphere, 9(6):2119–2134, 2015. URL: http://dx.doi.org/10.5194/tc-9-2119-2015.

[25]

C. Horvat and E. Tziperman. The evolution of scaling laws in the sea ice floe size distribution. Journal of Geophysical Research: Oceans, 122(9):7630–7650, 2017. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JC012573.

[26]

E.C. Hunke and C.M. Bitz. Age characteristics in a multidecadal Arctic sea ice simulation. J. Geophys. Res. Oceans, 2009. URL: http://dx.doi.org/10.1029/2008JC005186.

[27]

E.C. Hunke, D.A. Hebert, and O. Lecomte. Level-ice melt ponds in the Los Alamos Sea Ice Model, CICE. Ocean Modelling, 71:26–42, 2013. URL: http://dx.doi.org/10.1016/j.ocemod.2012.11.008.

[28]

N. Jeffery and E.C. Hunke. Modeling the winter-spring transition of first-year ice in the western Weddell Sea. J. Geophys. Res. Oceans, 119:5891–5920, 2014. URL: http://dx.doi.org/10.1002/2013JC009634.

[29]

N. Jeffery, E.C. Hunke, and S.M. Elliott. Modeling the transport of passive tracers in sea ice. J. Geophys. Res. Oceans, 116:2156–2202, 2011. URL: http://dx.doi.org/10.1029/2010JC006527.

[30]

M. Jin, C. Deal, J. Wang, K.H. Shin, N. Tanaka, T.E. Whiteledge, S.H. Lee, and R.R. Gradinger. Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska. Ann. Glaciol., 44:63–72, 2006. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf.

[31]

R.E. Jordan, E.L. Andreas, and A.P. Makshtas. Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res. Oceans, 104(C4):7785–7806, 1999. URL: http://dx.doi.org/10.1029/1999JC900011.

[32]

B.G. Kauffman and W.G. Large. The CCSM coupler, version 5.0.1. 2002. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf.

[33]

D. Lavoie, K. Denman, and C. Michel. Modeling ice algal growth and decline in a seasonally ice- covered region of the Arctic (Resolute Passage, Canadian Archipelago). J. Geophys. Res. Oceans, 2005. URL: http://dx.doi.org/10.1029/2005JC002922.

[34]

O. Lecomte, T. Fichefet, D. Flocco, D. Schroeder, and M. Vancoppenolle. Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean-sea ice model. Ocean Modelling, 87:67–80, 2015. URL: https://doi.org/10.1016/j.ocemod.2014.12.003.

[35]

O. Lecomte, T. Fichefet, M. Vancoppenolle, F. Domine, F. Massonet, P. Mathiot, S. Morin, and P. Y. Barriat. On the formulation of snow thermal conductivity in large-scale sea ice models. J. Adv. Modeling Earth Sys., 5:542–557, 2013. URL: https://doi.org/10.1002/jame.20039.

[36]

R.W. Lindsay. Temporal variability of the energy balance of thick Arctic pack ice. J. Climate, 11:313–333, 1998. URL: https://doi.org/10.1175/1520-0442(1998)011<0313:TVOTEB>2.0.CO;2.

[37]

W.H. Lipscomb. Modeling the Thickness Distribution of Arctic Sea Ice. Dept. of Atmospheric Sciences University of Washington, Seattle, 1998. PhD thesis. URL: http://hdl.handle.net/1773/10081.

[38]

W.H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res. Oceans, 106:13989–14000, 2001. URL: http://dx.doi.org/10.1029/2000JC000518.

[39]

W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2005JC003355.

[40]

P. Lu, Z. Li, B. Cheng, and M. Leppäranta. A parametrization fo the ice-ocean drag coefficient. J. Geophys. Res. Oceans, 2011. URL: http://dx.doi.org/10.1029/2010JC006878.

[41]

C. Lüpkes, V.M. Gryanik, J. Hartmann, and E.L. Andreas. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J. Geophys. Res. Atmos., 2012. URL: http://dx.doi.org/10.1029/2012JD017630.

[42]

G.A. Maykut. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. Oceans, 87:7971–7984, 1982. URL: http://dx.doi.org/10.1029/JC087iC10p07971.

[43]

G.A. Maykut and M.G. McPhee. Solar heating of the Arctic mixed layer. J. Geophys. Res. Oceans, 100:24691–24703, 1995. URL: http://dx.doi.org/10.1029/95JC02554.

[44]

G.A. Maykut and D.K. Perovich. The role of shortwave radiation in the summer decay of a sea ice cover. J. Geophys. Res. Oceans, 92:7032–7044, 1987. URL: http://dx.doi.org/10.1029/JC092iC07p07032.

[45]

G.A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic model of sea ice. J. Geophys. Res., 76:1550–1575, 1971. URL: http://dx.doi.org/10.1029/JC076i006p01550.

[46]

D. Notz. Thermodynamic and Fluid-Dynamical Processes in Sea Ice. University of Cambridge, UK, 2005. PhD thesis. URL: http://ulmss-newton.lib.cam.ac.uk/vwebv/holdingsInfo?bibId=27224.

[47]

W. K. Oleson, D. M. Lawrence, G. B. Bonan, M. G. Flanner, E. Kluzek, P. J. Lawrence, S. Levis, S. C. Swenson, and P. E. Thornton. Technical description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, 2019. URL: https://opensky.ucar.edu/islandora/object/technotes:493.

[48]

N. Ono. Specific heat and heat of fusion of sea ice. In H. Oura, editor, Physics of Snow and Ice, volume I, pages 599–610. Institute of Low Temperature Science, Hokkaido, Japan, 1967.

[49]

D. K. Perovich and K. F. Jones. The seasonal evolution of sea ice floe size distribution. J. Geophys. Res. Oceans, 119(12):8767–8777, 2014. URL: http://doi.wiley.com/10.1002/2014JC010136.

[50]

D.J. Pringle, H. Eicken, H.J. Trodahl, and L.G.E. Backstrom. Thermal conductivity of landfast Antarctic and Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003641.

[51]

L. A. Roach, C. Horvat, S. M. Dean, and C. M. Bitz. An emergent sea ice floe size distribution in a global coupled ocean-sea ice model. J. Geophys. Res. Oceans, 123(6):4322–4337, 2018. URL: http://dx.doi.org/10.1029/2017JC013692.

[52]

L. A. Roach, M. M. Smith, and S. M. Dean. Quantifying growth of pancake sea ice floes using images from drifting buoys. J. Geophys. Res. Oceans, 123(4):2851–2866, 2018. URL: http://doi.wiley.com/10.1002/2017JC013693.

[53]

L.A. Roach, C. M. Bitz, C. Horvat, and S. M. Dean. Advances in modelling interactions between sea ice and ocean surface waves. J. Adv. Modeling Earth Sys., 11(12):4167–4181, 2019. URL: http://doi.wiley.com/10.1029/2019MS001836.

[54]

A. F. Roberts, E. C. Hunke, S. M. Kamal, W. H. Lipscomb, C. Horvat, and W. Maslowski. A Variational Method for Sea Ice Ridging in Earth System Models. Journal of Advances in Modeling Earth Systems, 11:771–805, 2019. doi:10.1029/2018MS001395.

[55]

A.F. Roberts, A.P. Craig, W. Maslowski, R. Osinski, A.K. DuVivier, M. Hughes, B. Nijssen, J.J. Cassano, and M. Brunke. Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56(69):211–228, 2015. URL: http://dx.doi.org/10.3189/2015AoG69A760.

[56]

D. A. Rothrock and A. S. Thorndike. Measuring the sea ice floe size distribution. J. Geophys. Res., 89(C4):6477, 1984. URL: http://doi.wiley.com/10.1029/JC089iC04p06477.

[57]

D.A. Rothrock. The energetics of plastic deformation of pack ice by ridging. J. Geophys. Res., 80:4514–4519, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04514.

[58]

F. Roy, M. Chevallier, G.C. Smith, F. Dupont, G. Garric, J.-F. Lemieux, Y. Lu, and F. Davidson. Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere-ice-ocean surface layer. J. Geophys. Res. Oceans, 120(6):4392–4417, 2015. URL: https://doi.org/10.1002/2014JC010677, doi:https://doi.org/10.1002/2014JC010677.

[59]

S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D Behringer, Y. Hou, H. Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M.P. Mendez, H. van den Dool, Q. Zhang, W. Wang, M. Chen, and E. Becker. The NCEP Climate Forecast System Version 2. J. Climate, 27:2185–2208, 2014. URL: http://dx.doi.org/10.1175/JCLI-D-12-00823.1.

[60]

W. Schwarzacher. Pack ice studies in the Arctic Ocean. J. Geophys. Res., 64:2357–2367, 1959. URL: http://dx.doi.org/10.1029/JZ064i012p02357.

[61]

A.J. Semtner. A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate. J. Phys. Oceanogr., 6:379–389, 1976. URL: http://dx.doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

[62]

H. H. Shen, S. F. Ackley, and M. A. Hopkins. A conceptual model for pancake-ice formation in a wave field. Annals of Glaciology, 33(2):361–367, 2001. URL: http://dx.doi.org/10.3189/172756401781818239.

[63]

G. Siedler and H. Peters. Physical properties (general) of sea water. In Landolt-Börnstein: Numerical data and functional relationships in science and technology, New Series V/3a, pages 233–264. Springer, 1986.

[64]

M. Steele. Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res. Oceans, 97:17729–17738, 1992. URL: http://dx.doi.org/10.1029/92JC01755.

[65]

M. Sturm, J. Holmgren, and D. K. Perovich. Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. J. Geophys. Res. Oceans, 2002. URL: https://doi.org/10.1029/2000JC000400.

[66]

A. Tagliabue, L. Bopp, and O. Aumont. Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry. Geophys. Res. Lett., 2009. URL: http://dx.doi.org/10.1029/2009GL038914.

[67]

P.D. Taylor and D.L. Feltham. A model of melt pond evolution on sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2004JC002361.

[68]

A.S. Thorndike, D.A. Rothrock, G.A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys. Res., 80:4501–4513, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04501.

[69]

H.J. Trodahl, S.O.F. Wilkinson, M.J. McGuinness, and T.G. Haskeel. Thermal conductivity of sea ice: dependence on temperature and depth. Geophys. Res. Lett., 28:1279–1282, 2001. URL: http://dx.doi.org/10.1029/2000GL012088.

[70]

M. Tsamados, D.L. Feltham, D. Schroeder, D. Flocco, S.L. Farrell, N.T. Kurtz, S.W. Laxon, and S. Bacon. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J. Phys. Oceanogr., 44:1329–1353, 2014. URL: http://dx.doi.org/10.1175/JPO-D-13-0215.1.

[71]

A.K. Turner, E.C. Hunke, and C.M. Bitz. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res. Oceans, 118:2279–2294, 2013. URL: http://dx.doi.org/10.1002/jgrc.20171.

[72]

N. Untersteiner. Calculations of temperature regime and heat budget of sea ice in the Central Arctic. J. Geophys. Res., 69:4755–4766, 1964. URL: http://dx.doi.org/10.1029/JZ069i022p04755.